-
1 Bayesian learning
Англо-русский словарь промышленной и научной лексики > Bayesian learning
-
2 Bayesian learning of mean vector
Англо-русский словарь промышленной и научной лексики > Bayesian learning of mean vector
-
3 байесово обучение
Bayesian learning, Bayesian trainingРусско-английский словарь по электронике > байесово обучение
-
4 байесово обучение
Bayesian training, Bayesian learningРусско-английский словарь по радиоэлектронике > байесово обучение
-
5 эффективность по стимулам
Если наш анализ проводится до того, как агенты узнают свои типы, то соответствующим понятием эффективности является эффективность по стимулам ex ante относительно F*. Это понятие называется просто промежуточной эффективностью по стимулам ex ante. — If our analysis is conducted prior to agents learning their types, then the proper notion of efficiency is ex ante efficiency in F*. This notion is called simply ex ante incentive efficiency.
эффективность по стимулам, промежуточная (терминология Хольмстрема и Майерсона) — interim incentive efficiency ( the terminology is due to Holmstrem and Myerson)
Когда в момент проведения анализа благосостояния типы агентов уже определены, соответствующим понятием эффективности является промежуточная эффективность по F* множеству байесовских совместимых по стимулам и индивидуально рациональных функций общественного выбора. Это понятие называется просто промежуточной эффективностью по стимулам. — When agents' types are already determined at the time when we are conducting our welfare analysis, the proper notion of efficiency is interim efficiency in F*, the set of Bayesian incentive compatible and individually rational social choice functions. This notion is called simply interim incentive efficiency.
эффективность соглашений, относительная — relative efficiency of arrangements
Russian-English Dictionary "Microeconomics" > эффективность по стимулам
См. также в других словарях:
Bayesian probability — Bayesian statistics Theory Bayesian probability Probability interpretations Bayes theorem Bayes rule · Bayes factor Bayesian inference Bayesian network Prior · Posterior · Likelihood … Wikipedia
Bayesian inference — is statistical inference in which evidence or observations are used to update or to newly infer the probability that a hypothesis may be true. The name Bayesian comes from the frequent use of Bayes theorem in the inference process. Bayes theorem… … Wikipedia
Bayesian spam filtering — (pronounced BAYS ee ən, IPA pronunciation: IPA| [ beɪz.i.ən] , after Rev. Thomas Bayes), a form of e mail filtering, is the process of using a naive Bayes classifier to identify spam e mail.The first known mail filtering program to use a Bayes… … Wikipedia
Bayesian experimental design — provides a general probability theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for… … Wikipedia
Bayesian network — A Bayesian network, Bayes network, belief network or directed acyclic graphical model is a probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG). For example … Wikipedia
Bayesian model comparison — A common problem in statistical inference is to use data to decide between two or more competing models. Frequentist statistics uses hypothesis tests for this purpose. There are several Bayesian approaches. One approach is through Bayes… … Wikipedia
Bayesian-Filter — Der bayessche Filter (auch als bayesischer Filter bezeichnet) ist ein statistischer Filter, der auf dem bayesschen Wahrscheinlichkeitsbegriff aufbaut. Sein Name leitet sich vom englischen Mathematiker Thomas Bayes (etwa 1702−1761) ab. Markow… … Deutsch Wikipedia
Bayesian Filter — Der bayessche Filter (auch als bayesischer Filter bezeichnet) ist ein statistischer Filter, der auf dem bayesschen Wahrscheinlichkeitsbegriff aufbaut. Sein Name leitet sich vom englischen Mathematiker Thomas Bayes (etwa 1702−1761) ab. Markow… … Deutsch Wikipedia
One-shot learning — is an object categorization problem of current research interest in computer vision. Whereas most machine learning based object categorization algorithms require training on hundreds or thousands of images and very large datasets, one shot… … Wikipedia
Concept learning — Concept learning, also known as category learning, concept attainment, and concept formation, is largely based on the works of the cognitive psychologist Jerome Bruner. Bruner, Goodnow, Austin (1967) defined concept attainment (or concept… … Wikipedia
Computational learning theory — In theoretical computer science, computational learning theory is a mathematical field related to the analysis of machine learning algorithms. Contents 1 Overview 2 See also 3 References 3.1 Surveys … Wikipedia